Enrollment N	Vo:	Exam Seat No:				
C. U. SHAH UNIVERSITY Winter Examination-2020						
Subject Name	e: Digital Circuits					
Subject Code	e: 4TE03DCI1	Branch: B.Tech (Electrica	l)			
Semester: 3	Date: 10/03/2021	Time: 11:00 To 02:00	Marks: 70			
(2) Instru (3) Draw	of Programmable calculator & an actions written on main answer to neat diagrams and figures (if notes that a suitable data if needed.	•	ohibited.			
Q-1	Attempt the following question	ons:	(14)			
a)	Which of these sets of logic gaa) NOR, NAND.b) XOR, NOR, NAND.c) OR, NOT, AND.	tes are designated as universal gate	es?			
b)	d) NOR, NAND, XNOR.Which of the following is a diga) Regulator of a fanb) Microphone					
c)	c) Resistance of a material d) Light switch If a Hexadecimal number hexadecimal digit, there will be a) 1 b) 2	needs to convert to binary. Fe	or each			
d)	c) 4 d) 8 Complement of NOR and respectively.	OR gate is and				
e)	 a) AND, NAND b) NAND, AND c) NOR, OR d) None of above When will be the output of an A a) When any input is LOV b) When any input is HIG c) When all inputs are HIG 	V H GH				
f)	d) When all input is LOW Total number of inputs in a hal					

a) 2

		b) 3 c) 4	
		d) 1	
	g)	The difference between half adder and full adder is	
		a) Half adder has two inputs while full adder has four inputs	
		b) Half adder has one output while full adder has two outputs	
		c) Half adder has two inputs while full adder has three inputs	
	• `	d) All of the Mentioned	
	h)	In a number system, each position of a digit represents a specific power	
		of the base.	
		a) Trueb) False	
	i)	What does the symbol D represent in a hexadecimal number system?	
	1)	a) 8	
		b) 16	
		c) 13	
		d) 14	
	j)	A bit in a computer terminology means either 0 or 1.	
	•	a) True	
		b) False	
	k)	The binary equivalent of the octal number (0010010100)2 is	
	1)	Most significant bit of arithmetic addition is called	
		(a) overflow (b) carry (c) output (d) zero bit	
	m)	Code conversion circuits mostly uses	
	,	(a)AND-OR gates (b)AND gates (c)OR gates (d)XOR gates	
	n)	Two-bit subtraction is done by	
A 44	4	(a) demux (b) mux (c) full subtract (d) half subtract	
Attem	ipt any	four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	(a)	Compare digital system with analog system.	(07)
	(b)	Give statement and explain De' morgens Theorem.	(07)
Q-3		Attempt all questions	(14)
Q S	(a)	Design and Implement a Half Adder.	(07)
	(b)	Draw the logic symbol and construct the truth table for all logic gates.	(07)
	()		(-)
Q-4		Attempt all questions	(14)
	(a)	Write definition of Flip-flop and explain J-K flip flop.	(07)
	(b)	Design and Implement a 3-line to 8-line decoder.	(07)
0.5		Attomated greations	(1.1)
Q-5	(a)	Attempt all questions Explain full adder circuit with truth table	(14) (07)
	(a) (b)	Explain full adder circuit with truth table. With neat sketch explain the operation of R-S flip flop.	(07) (07)
	(D)	with near section explain the operation of R-5 IIIp Hop.	(07)
Q-6		Attempt all questions	(14)
	(a)	Convert (10101) ₂ to decimal.	(07)
	` /	Convert $(1001011)_2$ to decimal.	` '
		Convert $(105.15)_{10}$ to binary.	

	(b)	Write 1 st Complement of 1000101. Convert (4BAC) _{16 to} binary. Convert (2598.675)10 to hex.	
		Add to Numbers: 11011+10001.	
		Multiply $(1101)_2$ to by $(110)_2$.	
Q-7		Attempt all questions	(14)
_	(a)	Design and Implement a 1-line to 8-line demultiplexer.	(07)
	(b)	What are the applications of shift register?	(07)
Q-8		Attempt all questions	(14)
	(a)	Comparison of Counters and Registers.	(07)
	(b)	With neat diagram explain the operation of 4- bit parallel- in Serial-out Shift register.	(07)

